Code No: R5102303

B.TECH. I Year(R05) Supplementary Examinations, May/June 2010 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Bio-Technology)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define the terms
 - i. active power
 - ii. reactive power and
 - iii. apparent power, and give the expressions for the same.
 - (b) A single phase motor operating at 440 V, 50 HZ supply is developing 10 kW with an efficiency of 84% and power factor 0.7 lag. Calculate (a) the input KVA and active power, and reactive power. [6+10]
- 2. (a) Does the induction motor have any similarities with the transformer. Compare the similarities and differences between them.
 - (b) A 20 h.p, 400 V, 50 Hz, 3-phase induction motor has an efficiency of 80% and working at 0.7 p.f. The motor is connected to 400 Volts, 3-phase supply calculate the current drawn by the motor from the mains.
- 3. (a) Explain how a P-type semiconductor is formed. What are the different impurities used for this process.
 - (b) Derive the expression for intrinsic conductivity.?
 - (c) Explain about charge densities in a semiconductor.

[7+4+5]

- 4. (a) Draw the circuit diagram of half wave rectifier and explain its operation.
 - (b) A half wave rectifier is fed by 220 V, 50 Hz via a step down transformer of turns ratio 11:1 find
 - i. the output DC and
 - ii. peak inverse voltage under no load condition.

[8+8]

- 5. (a) Give the basic structure of UJT and explain its operation with the help of its emitter characteristic.
 - (b) Give the circuit diagram of UJT relaxation oscillator and sketch the various output waveforms.

 Also explain its operation. [8+8]
- 6. (a) List out different distortions that occur in amplifiers and discuss.
 - (b) Enumerate the effect of negative feedback on the various characteristics of the amplifier.
 - (c) Draw the circuit diagram of an emitter follower circuit and mention what type of feedback is employed? Justify your answer. [6+6+4]
- 7. (a) With the help of neat circuit diagram, explain the following applications of OP-AMP
 - i. Multiplier
 - ii. differentiator
 - iii. Subtractor.
 - (b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_o = -(3_{V1} + 4_{V2} + 5_{V3})$, where V_1 , V_2 and V_3 are the input voltages given to the circuit. [10+6]
- 8. (a) Explain with a block diagram the major blocks of a digital computer.
 - (b) Implement the following with either NAND or NOR gates. Use only 4 gates only the normal inputs are available.
 - F = w'xz + w'yz + x'yz' + wxy'z.
 - (c) With a circuit diagram, explain Counter type A to D converter.

[4+6+6]